
OS Designs

ECE 469, April 29

Aravind Machiry

Content copied from: https://slideplayer.com/slide/7115927/, Yanick Fratantonio, 王偉一，江哲維，洪心為

https://slideplayer.com/slide/7115927/

1

How to design a OS?
● Design: Components, organization of these components and

interaction between the components.

● Also, called OS architectures.

2

● All components bundled as a single entity.

Design 1: Monolithic

Main
function

OS
services

Utility
functions

3

Monolithic Kernel
● All OS functionality is included in a single program (address space)

○ E.g., UNIX, Linux, most commercial systems

● Advantages:

○ Easy to design and reason about.

○ Good performance.

● Disadvantages:

○ Poor separation: kernel components aren’t protected from each
other.

○ Cannot be easily extended.

4

Linux Kernel

● Mainly monolithic.

● Extensible: Kernel modules.

● Fairly modular.

5

Microkernels - outline

● OS kernel is very small – minimal functionality.

● Other OS functions provided at user level by trusted servers.

● User-level process, but trusted by kernel

● Advantage: Design reflects good software engineering practices

● Problem: performance

6

Microkernels

microkernel

User
process

User
process

file
server pager memory

server
process
server. . . User

space

Kernel
space

7

Microkernels - approach

● The microkernel layer provides a set of minimal core services and
is the interface to the hardware layer.

● Other services (drivers, memory managers, etc.) are implemented
as separate modules with clearly defined interfaces.

8

Microkernels - Advantages
• Modularity
• Flexibility and extensibility

– Easier to replace modules – fewer dependencies
– Different servers can implement the same service in different

ways
• Safety (each server is protected by the OS from other servers) using

standard OS memory protection techniques
• Servers are largely hardware independent
• Correctness

– Easier to verify a small kernel
– Servers are isolated; errors in one don’t affect others

9

Microkernels - Disadvantages
• Slow – is this due to “cross-domain” information transfers? Maybe

– Server-to-OS, OS-to-server IPC is thought to be a major source
of inefficiency

– Mode switches/context switches

• Generally it’s faster to communicate between two modules that are
both in OS – no mode switching involved

10

Monolithic/Micro/Hybrid kernel

Case Study: Android

11

- Android is based on Linux

- Each app has its own Linux user ID*

- Each app lives in its own security sandbox
- Standard Linux process isolation
- Restricted file system permissions

From the eyes of an app

12

* There are ways to setup apps
so that they share the user ID.

See "sharedUserId".

- The Android framework creates a new Linux user

- Each app is given a private directory
- Also called "Internal Storage"
- No other app can access it*

App Installation

13

* There are ways to setup apps
so that they share the user ID.

See "sharedUserId".

- Apps are run in separate processes

- Apps being in sandbox means that they can't
- talk to each other
- do anything security-sensitive

- Q: how can apps do anything interesting?

- This is when architecture & security get mixed up

App Isolation

14

- Going down: Java ~> libc ~> syscalls

- fd = open(const char *filename, int flags, umode_t mode)

- n = write(unsigned int fd, char *buf, size_t count)

- close(unsigned int fd);

Example: Saving a file

15

- Get current location?

- Send an SMS?

- Display something to the UI?

- Play a sound?

- Talk to other apps!?

Not all requests are as easy as opening a file...

16

17

- App invokes Android API
- LocationManager.getLastLocation() (ref)
- We are still within the app's sandbox!

- Actual implementation of the privileged API
- LocationManagerService.getLastLocation() (ref)
- We are in a "privileged" service

- How do we go from one side to the other one?

Example: getLastLocation()

18

http://androidxref.com/8.1.0_r33/xref/frameworks/base/location/java/android/location/LocationManager.java#1171
http://androidxref.com/8.1.0_r33/xref/frameworks/base/services/core/java/com/android/server/LocationManagerService.java#2159

- Binder!

- Binder: one of the main Android's "extensions" over Linux

- It allows for
- Remote Procedure Call (RPC)
- Inter-Process Communication (IPC)

Crossing the bridge

19

Binder RPC

20

App

LocationManager.getLastLocation()

Linux Kernel

Binder Driver

Binder "Proxy" Binder "Stub"

LocationManagerService.getLastLocation()

Kernel space

User space

Run as non-privileged process Run as a privileged
process/service

http://androidxref.com/8.1.0_r33/xref/frameworks/base/location/java/android/location/LocationManager.java#1171
http://androidxref.com/8.1.0_r33/xref/frameworks/base/services/core/java/com/android/server/LocationManagerService.java#2159

- Proxy and Stub are automatically generated starting
from AIDL

- Binder internals
- /dev/binder
- ioctl syscall

- Multi-purpose syscall, to talk to drivers
- The Binder kernel driver takes care of it, dispatches messages and returns replies

Binder details

21

http://androidxref.com/8.1.0_r33/xref/frameworks/base/location/java/android/location/ILocationManager.aidl#50

- Activity Manager
- Package Manager
- Telephony Manager
- Resource Manager
- Location Manager
- Notification Manager
- Resource Manager

Many "Managers"

22

$ adb shell service list

- How do apps talk to each other?

- High-level API: Intents

- Under the hood: Binder calls!

Binder as IPC mechanism

23

User space

Binder IPC: A → B.X

24

App A

ActivityManager

startActivity(new Intent(B.X))
Activity B.X:
onCreate()

1

2 3

4

5

Run as non-privileged
process

Linux Kernel

Binder Driver

Kernel space

Run as non-privileged
process

Run as a privileged
process/service

- Can an app always do all these things? Nope.

- It has a private folder... that's it?
- It can start other apps (the main activity is always "exported")
- It can show things on the screen (when the app is in foreground)

- It can't
- Open internet connection
- Get current location
- Write on the external storage
- ...

What about security?

25

- Android framework defines a long list of permissions

- Each of these "protects" security-sensitive capabilities
- The ability to "do" something sensitive

- Open Internet connection, send SMS
- The ability to "access" sensitive information

- Location, user contacts, ...

Android Permission System (overview, ref)

26

https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/reference/android/Manifest.permission#SEND_SMS

- INTERNET (string: "android.permission.INTERNET")

Examples of Permissions

27

https://developer.android.com/reference/android/Manifest.permission.html#INTERNET

- INTERNET (string: "android.permission.INTERNET")
- ACCESS_NETWORK_STATE, ACCESS_WIFI_STATE, CHANGE_NETWORK_STATE,

READ_PHONE_STATE
- ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION
- READ_SMS, RECEIVE_SMS, SEND_SMS
- ANSWER_PHONE_CALLS, CALL_PHONE, READ_CALL_LOG, WRITE_CALL_LOG
- READ_CONTACTS, WRITE_CONTACTS
- READ_CALENDAR, WRITE_CALENDAR
- READ_EXTERNAL_STORAGE, WRITE_EXTERNAL_STORAGE
- RECORD_AUDIO, CAMERA
- BLUETOOTH, NFC
- RECEIVE_BOOT_COMPLETED
- SYSTEM_ALERT_WINDOW
- SET_WALLPAPER

Examples of Permissions

28

https://developer.android.com/reference/android/Manifest.permission.html#INTERNET

Permissions from an app's perspective

29

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.awesomeapp">

 <uses-permission android:name="android.permission.SEND_SMS"/>
 <application ...>
 ...
 </application>
</manifest>

Permission Request

30

- Apps can define "custom" permissions!

 <permission
 android:name="com.example.myapp.permission.DEADLY_STUFF"
 android:label="@string/permlab_deadlyStuff"
 android:description="@string/permdesc_deadlyStuff"
 android:permissionGroup="android.permission-group.DEADLY"
 android:protectionLevel="signature" />

- The "system" permissions are defined in the same way
- AndroidManifest.xml

Custom Permissions (doc)

31

http://androidxref.com/8.1.0_r33/xref/frameworks/base/core/res/AndroidManifest.xml#566
https://developer.android.com/guide/topics/permissions/defining

- Two technical ways: Linux groups vs. explicit checks

- Linux groups
- INTERNET permission ~> app's user is added to "inet" Linux group
- BLUETOOTH permission ~> app's user is added to "bt_net" Linux group
- Declaration in AOSP: code

- Explicit check

Permission Enforcement Implementation

32

http://androidxref.com/8.1.0_r33/xref/frameworks/base/data/etc/platform.xml#24

Binder RPC

33

App

LocationManager.getLastLocation()

Linux Kernel

Binder Driver

Binder "Proxy" Binder "Stub"

LocationManagerService.getLastLocation()

Kernel space

User space

Run as non-privileged process Run as a privileged
process/service

http://androidxref.com/8.1.0_r33/xref/frameworks/base/location/java/android/location/LocationManager.java#1171
http://androidxref.com/8.1.0_r33/xref/frameworks/base/services/core/java/com/android/server/LocationManagerService.java#2159

- The service's code actually does a check

- LocationService
- LocationManagerService.getLastLocation()

- LocationManagerService.checkResolutionLevelIsSufficientForProviderUse()

- AudioFlinger
- ServiceUtilities.recordingAllowed()

- ContextImpl.checkPermission()
- ActivityManagerService.checkPermission()

- ActivityManagerService.checkComponentPermission()
- ActivityManager.checkComponentPermission()

- PackageManagerService.checkUidPermission()

Explicit Checks

34

http://androidxref.com/8.1.0_r33/xref/frameworks/base/services/core/java/com/android/server/LocationManagerService.java#2159
http://androidxref.com/8.1.0_r33/xref/frameworks/base/services/core/java/com/android/server/LocationManagerService.java#1472
http://androidxref.com/8.1.0_r33/xref/frameworks/av/services/audioflinger/ServiceUtilities.cpp#51
http://androidxref.com/8.1.0_r33/xref/frameworks/base/core/java/android/app/ContextImpl.java#1676
http://androidxref.com/8.1.0_r33/xref/frameworks/base/services/core/java/com/android/server/am/ActivityManagerService.java#8386
http://androidxref.com/8.1.0_r33/xref/frameworks/base/services/core/java/com/android/server/am/ActivityManagerService.java#8368
http://androidxref.com/8.1.0_r33/xref/frameworks/base/core/java/android/app/ActivityManager.java#3940
http://androidxref.com/8.1.0_r33/xref/frameworks/base/services/core/java/com/android/server/pm/PackageManagerService.java#5311

35

Case Study: FreeRTOS

• A Real Time Operating System

• Written by Richard Barry & FreeRTOS Team

• Owned by Real Time Engineers Ltd but free to use

• Huge number of users all over the world

• 6000 Download per month

• Simple but very powerful

36

Real Time Operating System?
• A type of an operating system

• It’s all about scheduler :
• multi user operating system(UNIX)－ fair amount of the

processing time
• desktop operating system(Windows)－ remain responsive to

its user
• ……

• RTOS scheduler focuses on predictable execution pattern

37

Why FreeRTOS?
• Abstract out timing information

• Maintainability/Extensibility

• Modularity

• Cleaner interfaces

• Easier testing (in some cases)

• Code reuse

• Improved efficiency?

• Idle time

　…...

　……

38

When to use FreeRTOS?

39

FreeRTOS Architecture?
• Tasks (50%)

• task.c and task.h do all the heavy lifting for creating,
scheduling, and maintaining tasks.

• Communication (40%)

• queue.c and queue.h handle FreeRTOS communication. Tasks
and interrupts use queues to send data to each other and to
signal the use of critical resources using semaphores and
mutexes.

• Hardware Interfacing (6%)

40

User space/Kernel space
• No MMU => No Separation!

• Large Program:
• Each task => Thread
• Scheduling between tasks (i.e., threads) based on priority.

41

Ideal OS architecture?
• Hard.

• Different use cases / Hardware capabilities/ Requirements.

• Even the same OS is customized for different use cases:
• Ubuntu => Desktop v/s Server.

