OS Designs

ECE 469, April 29

Aravind Machiry

Ve, 22y

, Yanick Fratantonio, I —, 71

https://slideplayer.com/slide/7115927/

How to design a OS?

e Design: Components, organization of these components and
interaction between the components.

e Also, called OS architectures.

Design 1: Monolithic

e All components bundled as a single entity.

Main
function

functions

Monolithic Kernel

« All OS functionality is included in a single program (address space)
o E.g., UNIX, Linux, most commercial systems

« Advantages:
o Easy to design and reason about.
- Good performance.

. Disadvantages:

o Poor separation: kernel components aren’t protected from each
other.

o Cannot be easily extended.

Linux Kernel

e Mainly monolithic.
e Extensible: Kernel modules.

e Fairly modular.

Microkernels - outline

® OS kernel is very small — minimal functionality.
e Other OS functions provided at user level by trusted servers.
e User-level process, but trusted by kernel
e Advantage: Design reflects good software engineering practices

® Problem: performance

[N N)
[X X)
[X J
- @
Microkernels
User User file ager memory | process | \ User
process | process server p g server server space
| !
microkernel

> Kernel
space

Microkernels - approach

e The microkernel layer provides a set of minimal core services and
is the interface to the hardware layer.

e Other services (drivers, memory managers, etc.) are implemented
as separate modules with clearly defined interfaces.

Microkernels - Advantages

e Modularity
e Flexibility and extensibility
— Easier to replace modules — fewer dependencies
— Different servers can implement the same service in different
ways
e Safety (each server is protected by the OS from other servers) using
standard OS memory protection techniques
e Servers are largely hardware independent
e (Correctness
— Easier to verify a small kernel
— Servers are isolated; errors in one don’t affect others

Microkernels - Disadvantages

e Slow —is this due to “cross-domain” information transfers? Maybe

— Server-to-0S, OS-to-server IPC is thought to be a major source
of inefficiency

— Mode switches/context switches

e Generally it’s faster to communicate between two modules that are
both in OS — no mode switching involved

Monolithic/Micro/Hybrid kernel

Monolithic Kernel
based Operating System

System

Operating system

Microkernel "Hybrid kernel"
based Operating System based Operating System

Application Application

UNIX | Device
Server | Driver

Application Device
IPC Driver

Hardware Hardware

10

Case Study: Android

System Apps

Dialer Email Calendar Camera

Java API Framework

Managers
Content Providers
Activity Location Package Notification

View System Resource Telephony Window

Native C/C++ Libraries

Webkit OpenMAX AL Android Runtime (ART)

Media Framework OpenGL ES - Core Libraries

Hardware Abstraction Layer (HAL)

Bluetooth Camera Sensors

Linux Kernel
Drivers
Binder (IPC) Display
Bluetooth Camera

Shared Memory

Power Management

1

From the eyes of an app

- Android is based on Linux

- Each app has its own Linux user ID*

* There are ways to setup apps
so that they share the user ID.
See "sharedUserld".

- Each app lives in its own security sandbox

Standard Linux process isolation
Restricted file system permissions

12

App Installation

- The Android framework creates a new Linux user

- Each app is given a private directory

Also called "Internal Storage”
No other app can access it*

* There are ways to setup apps
so that they share the user ID.
See "sharedUserld".

13

App Isolation

Apps are run in separate processes

Apps being in sandbox means that they can't

- talk to each other
- do anything security-sensitive

Q: how can apps do anything interesting?

This is when architecture & security get mixed up

14

Example: Saving a file

Going down: Java ~> libc ~> syscalls

fd = open(const char *filename, int flags, umode t mode)

n = write(unsigned int fd, char *buf, size t count)

close(unsigned int fd);

15

Not all requests are as easy as opening a file...

- Get current location?

- Send an SMS?

- Display something to the UI?
- Play a sound?

- Talk to other apps!?

16

System Apps

Dialer Calendar Camera

Java API Framework

Managers
Content Providers
Activity Location Package Notification

View System Resource Telephony Window

Native C/C++ Libraries

Webkit OpenMAX AL Android Runtime (ART)

Media Framework OpenGL ES ,_, Core Libraries

Hardware Abstraction Layer (HAL)

Bluetooth Camera Sensors

Linux Kernel

Drivers

Binder (IPC) Display

Bluetooth Camera

Shared Memory

Power Management

17

Example: getLastLocation()

- App invokes Android API

- LocationManager.getLastLocation() (ref)
- We are still within the app's sandbox!

- Actual implementation of the privileged API

- LocationManagerService.getLastLocation() (ref)
- We are in a "privileged" service

- How do we go from one side to the other one?

18

http://androidxref.com/8.1.0_r33/xref/frameworks/base/location/java/android/location/LocationManager.java#1171
http://androidxref.com/8.1.0_r33/xref/frameworks/base/services/core/java/com/android/server/LocationManagerService.java#2159

Crossing the bridge
- Binder!
- Binder: one of the main Android's "extensions" over Linux

- It allows for

- Remote Procedure Call (RPC)
- Inter-Process Communication (IPC)

19

Binder RPC

Run as non-privileged process

App
\

Run as a privileged
process/service

LocationManaqer.&etLastLocation()

LocationManagerService.getLastLocation()

\

Binder "P&xy"

User space \

|
Binder "}tub"

/

Kernel space \

/

~N

Binder Driver

e

Lin

20

http://androidxref.com/8.1.0_r33/xref/frameworks/base/location/java/android/location/LocationManager.java#1171
http://androidxref.com/8.1.0_r33/xref/frameworks/base/services/core/java/com/android/server/LocationManagerService.java#2159

Binder details

- Proxy and Stub are automatically generated starting
from AIDL

- Binder internals

- /dev/binder

- ioctl syscall
Multi-purpose syscall, to talk to drivers
The Binder kernel driver takes care of it, dispatches messages and returns replies

21

http://androidxref.com/8.1.0_r33/xref/frameworks/base/location/java/android/location/ILocationManager.aidl#50

Many "Managers"

- Activity Manager

- Package Manager

- Telephony Manager
- Resource Manager
- Location Manager

- Notification Manager
- Resource Manager

S adb shell service list

22

Binder as IPC mechanism

- How do apps talk to each other?
- High-level API: Intents

- Under the hood: Binder calls!

23

Binder IPC: A —- B.X

Run as non-privileged
process

App A

|

startActivity(new Intent(B.X))

Run as non-privileged
process

Run as a privileged
process/service

Activity B.X:

7{\/ityManager

onCreate()

User space \

Kernel space \

N AL

Binder Driver

Linux Kernel

24

What about security?

- Can an app always do all these things? Nope.

- It has a private folder... that's it?

- It can start other apps (the main activity is always "exported")
- It can show things on the screen (when the app is in foreground)

- ltcan't
- Open internet connection
- Get current location
- Write on the external storage

25

Android Permission System (overview, ref)

- Android framework defines a long list of permissions

- Each of these "protects" security-sensitive capabilities

- The ability to "do" something sensitive
Open Internet connection, send SMS

- The ability to "access" sensitive information
Location, user contacts, ...

26

https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/reference/android/Manifest.permission#SEND_SMS

Examples of Permissions

INTERNET (string: "android.permission.INTERNET")

27

https://developer.android.com/reference/android/Manifest.permission.html#INTERNET

Examples of Permissions

- INTERNET (string: "android.permission.INTERNET")

- ACCESS_NETWORK_STATE, ACCESS_WIFI_STATE, CHANGE_NETWORK_STATE,
READ_PHONE_STATE

- ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION

- READ_SMS, RECEIVE_SMS, SEND_SMS

- ANSWER_PHONE_CALLS, CALL_PHONE, READ_CALL_LOG, WRITE_CALL_LOG

- READ_CONTACTS, WRITE_CONTACTS

- READ_CALENDAR, WRITE_CALENDAR

- READ_EXTERNAL_STORAGE, WRITE_EXTERNAL_STORAGE

- RECORD_AUDIO, CAMERA

- BLUETOOTH, NFC

- RECEIVE_BOOT_COMPLETED

- SYSTEM_ALERT_WINDOW

- SET_WALLPAPER

28

https://developer.android.com/reference/android/Manifest.permission.html#INTERNET

Permissions from an app's perspective

29

Permission Request

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.awesomeapp'">

<uses-permission android:name="android.permission.SEND SMS"/>
<application ...>

</application>
</manifest>

30

Custom Permissions (doc)

- Apps can define "custom" permissions!

<permission
android:name="com.example.myapp.permission.DEADLY STUFF"
android:label="@string/permlab deadlyStuff"
android:description="@string/permdesc deadlyStuff"
android:permissionGroup="android.permission-group.DEADLY"
android:protectionlLevel="signature" />

- The "system" permissions are defined in the same way
- AndroidManifest.xml

31

http://androidxref.com/8.1.0_r33/xref/frameworks/base/core/res/AndroidManifest.xml#566
https://developer.android.com/guide/topics/permissions/defining

Permission Enforcement Implementation
- Two technical ways: Linux groups vs. explicit checks

- Linux groups
- INTERNET permission ~> app's user is added to "inet" Linux group
- BLUETOOTH permission ~> app's user is added to "bt_net" Linux group
- Declaration in AOSP: code

- Explicit check

32

http://androidxref.com/8.1.0_r33/xref/frameworks/base/data/etc/platform.xml#24

Binder RPC

Run as non-privileged process

Run as a privileged
process/service

LocationManaqerServic.Qg\etLastLocation()

User space

o

Kernel space \

Binder Driver

Lin

33

http://androidxref.com/8.1.0_r33/xref/frameworks/base/location/java/android/location/LocationManager.java#1171
http://androidxref.com/8.1.0_r33/xref/frameworks/base/services/core/java/com/android/server/LocationManagerService.java#2159

Explicit Checks

- The service's code actually does a check

- LocationService

- LocationManagerService.getlLastl ocation()
- LocationManagerService.checkResolutionLevellsSufficientForProviderUse()

- AudioFlinger

- ServiceUtilities.recordingAllowed()
- Contextlmpl.checkPermission()
- ActivityManagerService.checkPermission()
- ActivityManagerService.checkComponentPermission()
- ActivityManager.checkComponentPermission()
- PackageManagerService.checkUidPermission()

34

http://androidxref.com/8.1.0_r33/xref/frameworks/base/services/core/java/com/android/server/LocationManagerService.java#2159
http://androidxref.com/8.1.0_r33/xref/frameworks/base/services/core/java/com/android/server/LocationManagerService.java#1472
http://androidxref.com/8.1.0_r33/xref/frameworks/av/services/audioflinger/ServiceUtilities.cpp#51
http://androidxref.com/8.1.0_r33/xref/frameworks/base/core/java/android/app/ContextImpl.java#1676
http://androidxref.com/8.1.0_r33/xref/frameworks/base/services/core/java/com/android/server/am/ActivityManagerService.java#8386
http://androidxref.com/8.1.0_r33/xref/frameworks/base/services/core/java/com/android/server/am/ActivityManagerService.java#8368
http://androidxref.com/8.1.0_r33/xref/frameworks/base/core/java/android/app/ActivityManager.java#3940
http://androidxref.com/8.1.0_r33/xref/frameworks/base/services/core/java/com/android/server/pm/PackageManagerService.java#5311

Case Study: FreeRTOS

* A Real Time Operating System
* Written by Richard Barry & FreeRTOS Team
* Owned by Real Time Engineers Ltd but free to use

* Huge number of users all over the world
* 6000 Download per month

* Simple but very powerful / =
-

&\

35

Real Time Operating System?

* A type of an operating system

e |It’s all about scheduler :

* multi user operating system(UNIX)— fair amount of the
processing time

» desktop operating system(Windows)— remain responsive to
its user

* RTOS scheduler focuses on predictable execution pattern

36

Why FreeRTOS?

* Abstract out timing information

* Maintainability/Extensibility
* Modularity

* Cleaner interfaces

* Easier testing (in some cases)
* Code reuse

* Improved efficiency?

* [dle time

37

When to use FreeRTOS?

No Scheduler

Applicability

Processor power

38

FreeRTOS Architecture?

* Tasks (50%)

and do all the heavy lifting for creating,
scheduling, and maintaining tasks.

e Communication (40%)

and handle FreeRTOS communication. Tasks
and interrupts use queues to send data to each other and to
signal the use of critical resources using semaphores and
mutexes.

* Hardware Interfacing (6%)

39

User space/Kernel space

* No MMU => No Separation!
* Large Program:

e Each task => Thread
e Scheduling between tasks (i.e., threads) based on priority.

40

Ideal OS architecture?

e Hard.

* Different use cases / Hardware capabilities/ Requirements.

* Even the same OS is customized for different use cases:
e Ubuntu => Desktop v/s Server.

41

