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How to design a OS?

e Design: Components, organization of these components and
interaction between the components.

e Also, called OS architectures.




Design 1: Monolithic

e All components bundled as a single entity.

Main
function

functions



Monolithic Kernel

« All OS functionality is included in a single program (address space)
o E.g., UNIX, Linux, most commercial systems

« Advantages:
o Easy to design and reason about.
- Good performance.

. Disadvantages:

o Poor separation: kernel components aren’t protected from each
other.

o Cannot be easily extended.



Linux Kernel

e Mainly monolithic.
e Extensible: Kernel modules.

e Fairly modular.




Microkernels - outline

® OS kernel is very small — minimal functionality.
e Other OS functions provided at user level by trusted servers.
e User-level process, but trusted by kernel
e Advantage: Design reflects good software engineering practices

® Problem: performance
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Microkernels - approach

e The microkernel layer provides a set of minimal core services and
is the interface to the hardware layer.

e Other services (drivers, memory managers, etc.) are implemented
as separate modules with clearly defined interfaces.



Microkernels - Advantages

e Modularity
e Flexibility and extensibility
— Easier to replace modules — fewer dependencies
— Different servers can implement the same service in different
ways
e Safety (each server is protected by the OS from other servers) using
standard OS memory protection techniques
e Servers are largely hardware independent
e (Correctness
— Easier to verify a small kernel
— Servers are isolated; errors in one don’t affect others



Microkernels - Disadvantages

e Slow —is this due to “cross-domain” information transfers? Maybe

— Server-to-0S, OS-to-server IPC is thought to be a major source
of inefficiency

— Mode switches/context switches

e Generally it’s faster to communicate between two modules that are
both in OS — no mode switching involved



Monolithic/Micro/Hybrid kernel
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Case Study: Android

System Apps

Dialer Email Calendar Camera

Java API Framework

Managers
Content Providers
Activity Location Package Notification

View System Resource Telephony Window

Native C/C++ Libraries

Webkit OpenMAX AL Android Runtime (ART)

Media Framework OpenGL ES - Core Libraries

Hardware Abstraction Layer (HAL)

Bluetooth Camera Sensors

Linux Kernel
Drivers
Binder (IPC) Display
Bluetooth Camera

Shared Memory

Power Management
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From the eyes of an app

- Android is based on Linux

- Each app has its own Linux user ID*

* There are ways to setup apps
so that they share the user ID.
See "sharedUserld".

- Each app lives in its own security sandbox

Standard Linux process isolation
Restricted file system permissions
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App Installation

- The Android framework creates a new Linux user

- Each app is given a private directory

Also called "Internal Storage”
No other app can access it*

* There are ways to setup apps
so that they share the user ID.
See "sharedUserld".
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App Isolation

Apps are run in separate processes

Apps being in sandbox means that they can't

- talk to each other
- do anything security-sensitive

Q: how can apps do anything interesting?

This is when architecture & security get mixed up
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Example: Saving a file

Going down: Java ~> libc ~> syscalls

fd = open(const char *filename, int flags, umode t mode)

n = write(unsigned int fd, char *buf, size t count)

close(unsigned int fd);
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Not all requests are as easy as opening a file...

- Get current location?

- Send an SMS?

- Display something to the UI?
- Play a sound?

- Talk to other apps!?

16



System Apps
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Example: getLastLocation()

- App invokes Android API

- LocationManager.getLastLocation() (ref)
- We are still within the app's sandbox!

- Actual implementation of the privileged API

- LocationManagerService.getLastLocation() (ref)
- We are in a "privileged" service

- How do we go from one side to the other one?
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http://androidxref.com/8.1.0_r33/xref/frameworks/base/location/java/android/location/LocationManager.java#1171
http://androidxref.com/8.1.0_r33/xref/frameworks/base/services/core/java/com/android/server/LocationManagerService.java#2159

Crossing the bridge
- Binder!
- Binder: one of the main Android's "extensions" over Linux

- It allows for

- Remote Procedure Call (RPC)
- Inter-Process Communication (IPC)
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Binder RPC
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http://androidxref.com/8.1.0_r33/xref/frameworks/base/location/java/android/location/LocationManager.java#1171
http://androidxref.com/8.1.0_r33/xref/frameworks/base/services/core/java/com/android/server/LocationManagerService.java#2159

Binder details

- Proxy and Stub are automatically generated starting
from AIDL

- Binder internals

- /dev/binder

- ioctl syscall
Multi-purpose syscall, to talk to drivers
The Binder kernel driver takes care of it, dispatches messages and returns replies
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http://androidxref.com/8.1.0_r33/xref/frameworks/base/location/java/android/location/ILocationManager.aidl#50

Many "Managers"

- Activity Manager

- Package Manager

- Telephony Manager
- Resource Manager
- Location Manager

- Notification Manager
- Resource Manager

S adb shell service list
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Binder as IPC mechanism

- How do apps talk to each other?
- High-level API: Intents

- Under the hood: Binder calls!
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Binder IPC: A —- B.X

Run as non-privileged
process

App A

|

startActivity(new Intent(B.X))
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What about security?

- Can an app always do all these things? Nope.

- It has a private folder... that's it?

- It can start other apps (the main activity is always "exported")
- It can show things on the screen (when the app is in foreground)

- ltcan't
- Open internet connection
- Get current location
- Write on the external storage
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Android Permission System (overview, ref)

- Android framework defines a long list of permissions

- Each of these "protects" security-sensitive capabilities

- The ability to "do" something sensitive
Open Internet connection, send SMS

- The ability to "access" sensitive information
Location, user contacts, ...
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https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/reference/android/Manifest.permission#SEND_SMS

Examples of Permissions

INTERNET (string: "android.permission.INTERNET")
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https://developer.android.com/reference/android/Manifest.permission.html#INTERNET

Examples of Permissions

- INTERNET (string: "android.permission.INTERNET")

- ACCESS_NETWORK_STATE, ACCESS_WIFI_STATE, CHANGE_NETWORK_STATE,
READ_PHONE_STATE

- ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION

- READ_SMS, RECEIVE_SMS, SEND_SMS

-  ANSWER_PHONE_CALLS, CALL_PHONE, READ_CALL_LOG, WRITE_CALL_LOG

- READ_CONTACTS, WRITE_CONTACTS

- READ_CALENDAR, WRITE_CALENDAR

- READ_EXTERNAL_STORAGE, WRITE_EXTERNAL_STORAGE

- RECORD_AUDIO, CAMERA

- BLUETOOTH, NFC

- RECEIVE_BOOT_COMPLETED

- SYSTEM_ALERT_WINDOW

-  SET_WALLPAPER
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https://developer.android.com/reference/android/Manifest.permission.html#INTERNET

Permissions from an app's perspective
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Permission Request

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.awesomeapp'">

<uses-permission android:name="android.permission.SEND SMS"/>
<application ...>

</application>
</manifest>
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Custom Permissions (doc)

- Apps can define "custom" permissions!

<permission
android:name="com.example.myapp.permission.DEADLY STUFF"
android:label="@string/permlab deadlyStuff"
android:description="@string/permdesc deadlyStuff"
android:permissionGroup="android.permission-group.DEADLY"
android:protectionlLevel="signature" />

- The "system" permissions are defined in the same way
- AndroidManifest.xml
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http://androidxref.com/8.1.0_r33/xref/frameworks/base/core/res/AndroidManifest.xml#566
https://developer.android.com/guide/topics/permissions/defining

Permission Enforcement Implementation
- Two technical ways: Linux groups vs. explicit checks

- Linux groups
- INTERNET permission ~> app's user is added to "inet" Linux group
- BLUETOOTH permission ~> app's user is added to "bt_net" Linux group
- Declaration in AOSP: code

- Explicit check
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http://androidxref.com/8.1.0_r33/xref/frameworks/base/data/etc/platform.xml#24
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http://androidxref.com/8.1.0_r33/xref/frameworks/base/location/java/android/location/LocationManager.java#1171
http://androidxref.com/8.1.0_r33/xref/frameworks/base/services/core/java/com/android/server/LocationManagerService.java#2159

Explicit Checks

- The service's code actually does a check

- LocationService

- LocationManagerService.getlLastl ocation()
- LocationManagerService.checkResolutionLevellsSufficientForProviderUse()

- AudioFlinger

- ServiceUtilities.recordingAllowed()
- Contextlmpl.checkPermission()
- ActivityManagerService.checkPermission()
- ActivityManagerService.checkComponentPermission()
- ActivityManager.checkComponentPermission()
- PackageManagerService.checkUidPermission()
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http://androidxref.com/8.1.0_r33/xref/frameworks/base/services/core/java/com/android/server/LocationManagerService.java#2159
http://androidxref.com/8.1.0_r33/xref/frameworks/base/services/core/java/com/android/server/LocationManagerService.java#1472
http://androidxref.com/8.1.0_r33/xref/frameworks/av/services/audioflinger/ServiceUtilities.cpp#51
http://androidxref.com/8.1.0_r33/xref/frameworks/base/core/java/android/app/ContextImpl.java#1676
http://androidxref.com/8.1.0_r33/xref/frameworks/base/services/core/java/com/android/server/am/ActivityManagerService.java#8386
http://androidxref.com/8.1.0_r33/xref/frameworks/base/services/core/java/com/android/server/am/ActivityManagerService.java#8368
http://androidxref.com/8.1.0_r33/xref/frameworks/base/core/java/android/app/ActivityManager.java#3940
http://androidxref.com/8.1.0_r33/xref/frameworks/base/services/core/java/com/android/server/pm/PackageManagerService.java#5311

Case Study: FreeRTOS

* A Real Time Operating System
* Written by Richard Barry & FreeRTOS Team
* Owned by Real Time Engineers Ltd but free to use

* Huge number of users all over the world
* 6000 Download per month

* Simple but very powerful / =
-

&\
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Real Time Operating System?

* A type of an operating system

e |It’s all about scheduler :

* multi user operating system(UNIX)— fair amount of the
processing time

» desktop operating system(Windows)— remain responsive to
its user

* RTOS scheduler focuses on predictable execution pattern
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Why FreeRTOS?

* Abstract out timing information

* Maintainability/Extensibility
* Modularity

* Cleaner interfaces

* Easier testing (in some cases)
* Code reuse

* Improved efficiency?

* [dle time
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When to use FreeRTOS?

No Scheduler

Applicability

Processor power
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FreeRTOS Architecture?

* Tasks (50%)

and do all the heavy lifting for creating,
scheduling, and maintaining tasks.

e Communication (40%)

and handle FreeRTOS communication. Tasks
and interrupts use queues to send data to each other and to
signal the use of critical resources using semaphores and
mutexes.

* Hardware Interfacing (6%)
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User space/Kernel space

* No MMU => No Separation!
* Large Program:

e Each task => Thread
e Scheduling between tasks (i.e., threads) based on priority.
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Ideal OS architecture?

e Hard.

* Different use cases / Hardware capabilities/ Requirements.

* Even the same OS is customized for different use cases:
e Ubuntu => Desktop v/s Server.
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